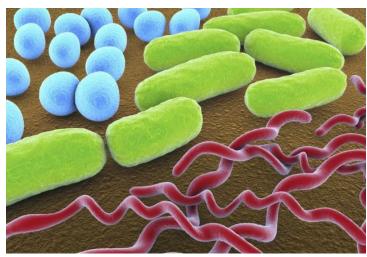
An Overview of the Bacteriological Examination of Freshwater Mussels

Eric Leis Fish Biologist La Crosse Fish Health Center U.S. Fish and Wildlife Service


Bacteria Overview

- Unicellular, Microscopic
 - Cell wall
 - DNA
- Inhabit Every Environment
 - 1 Million Bacterial Cells in a mL of water
- Nearly impossible to truly sterilize
- Some species can go from division to reproducing in 10 minutes
- E. coli can travel 25 times its body length in 1 second

Bacteria Overview

- Beneficial, Commensal or Parasitic
 - changing conditions
- Complex interactions between bacterial species can cause disease
 - May not be as simple as one species

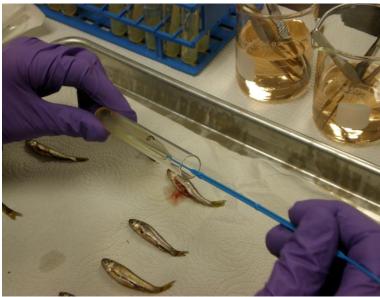
Thoughtco.com

- Routine Health Inspections
- Identify pathogens in wild populations
 - Informed decisions regarding brood stock collection
- American Fisheries Society Bluebook
- Specific Pathogens
 - Yersinia ruckeri
 - Aeromonas salmoncida
 - Edwardsiella ictaluri
 - Renibacterium salmoninarum

- Yersinia ruckeri
 - Causes disease in salmonids
 - High mortality rates
 - Identified from freshwater mussels

- Aeromonas salmonicida
 - Warm, cool and coldwater fish
 - High mortalities
 - Identified from freshwater mussels

- Edwardsiella ictaluri
 - Primarily Channel Catfish
 - "Hole in the Head" Disease
 - High Mortality Rates

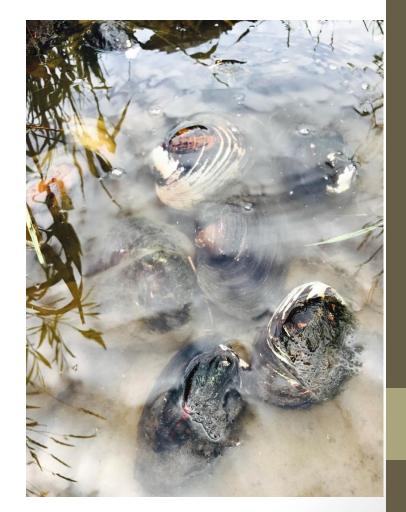


- Renibacterium salmoninarum
 - Salmonids
 - Bacterial Kidney Disease
 - Large Mortality Events if Stressed

- Culture bacteria
 - Kidney
- Tryptic Soy Agar (TSA)
- Incubate 23°C
- Isolate
 - Pure Cultures
- Identify
 - Morphology (Gram Stain)
 - Motility
 - Biochemical Tests
 - Carbohydrate Fermentation
- Identification
 - Biolog
 - PCR
 - DFAT

Beka McCann

Bacteriology


- Fish
 - Specific bacteria
 - Standardized Methods
- Marine Mussels
 - Economic Impact
- Freshwater Mussels
 - Largely unknown
 - Lack of consensus

Hurdles to Studying Mussel Bacteriology

- Difficult to study
 - Aquatic Environment
 - Contamination
 - Bioconcentrators
 - Food Source
 - Relationship to Mussels
 - Symbiotic
 - Mutualism
 - Commensal
 - Pathogen
 - Incidental
 - Acquired during siphoning

Sara Erickson

Hurdles to Studying Mussel Bacteriology

- Sample Collection
 - Organs
 - Visceral Mass
 - Removed
 - Externally Disinfected
 - Homogenized
 - Fluids
 - Hemolymph
- Growth Media
 - Culture living bacteria
 - May require more specialized media
 - Slow growing bacteria may be outcompeted
- Metagenomics
 - Highly sensitive DNA based assay
 - Can be expensive

Starliper, Powell and Garner 2009

Starliper, Powell and Garner 2009

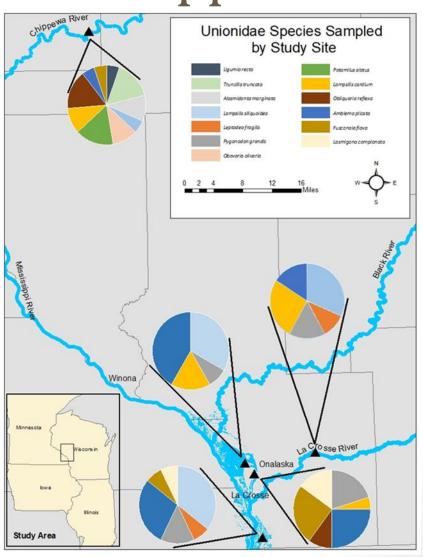
Starliper, Powell and Garner 2009

Starliper, Powell and Garner 2009

Hurdles to Studying Mussel Bacteriology

- Obtain more background information
 - Geographical Areas
 - Unionid Species
 - Sample Type
 - Mussels in Culture
 - May be critical in our understanding of Unionid diseases
- Mussel Mortality Event
 - Examined quickly
 - Very few answers historically

Bacteriology Surveys of Unionid Mussels

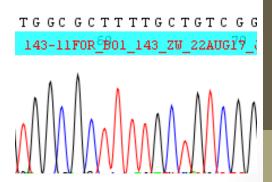

- Began as a survey of Unionids from the upper Mississippi River
 - Tony Goldberg (University of Wisconsin)
 - Diane Waller (USGS)
 - Sara Erickson (USFWS)
- Mortality event in Clinch River allowed for comparison of the culturable bacterial communities
 - Jordan Richard (USFWS)

- Survey 14 Unionid Species (101 Individuals) in the upper Mississippi River basin
 - Black Sandshell
 - Deertoe
 - Flktoe
 - Fatmucket
 - Fragile Papershell
 - Giant Floater
 - Hickory Nut
 - Pink Heelsplitter
 - Plain Pocketbook
 - Three-horn Wartyback
 - Three Ridge
 - Wabash Pigtoe
 - White Heelsplitter
 - Butterfly

- Hemolymph
 - Nonlethal sample
 - Relative disconnect with the aquatic environment
 - Circulatory system

- Open the Mussels with reverse pliers
- Sterilize adductor muscle with 70% Isopropyl Alcohol
- Draw Hemolymph
 - Anterior Adductor muscle
- Place two drops onto Tryptic Soy Agar (TSA)
- Incubate at 23°C for one week

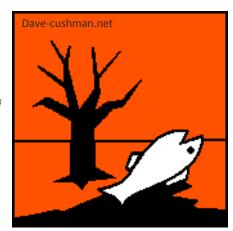
- Sample colonies
- Extract DNA
 - Prepman Ultra Reagent
- PCR primers targeting 16S rRNA gene
 - Regularly used in bacterial taxonomy



- Sanger Sequencing
 - Whitney Genetics Lab
- BLASTn search

- 180 bacterial isolates identified from 74 individuals
 - Cultured bacteria from 73% of individuals sampled
- No obvious pathogens detected
- Trends.....
 - Bacillus spp. isolated from 23% of individuals (23 of 101)
 - Aeromonas spp. isolated from 16% of individuals (16 of 101)
- Yersina ruckeri and Aeromonas salmonicida
 - Certifiable fish pathogens
 - Several isolations and locations

- Bacillus spp.
 - Hearty group of bacteria
 - Wide ranges of temperature, pH, UV, salinity, etc.
 - Variety of environments
 - Can be pathogens to plants and animals
 - Produce antibiotic and bacteriostatic compounds
 - Breakdown metals and chemicals
 - Many Bacillus spp. (including our isolates) convert urea into calcium carbonate
 - Used for "living concrete" that can heal itself
 - Probiotic to help chickens produce thicker egg shells



- Calcium carbonate production
 - Brevundimonas diminuta
 - Pseudomonas stutzeri; P. koreensis; P. putida
 - Viridibacillus arenosi
 - Lysinibacillus boronitolerans; L. sphaericus
 - Caulobacteraceae bacterium
- Exiguobacterium spp. (mostly E. indicum)
 - Chondroitin
- Aeromonas spp.
 - Ubiquitous
 - Likely secondary pathogens

- Isolates involved in bioremediation
 - 40 mussels (64 isolates)
 - Heavy metals (Chromium, Arsenic, Lead, Cadmium, Mercury, etc.) Polycyclic Aromatic Hydrocarbons (PAH's), PCB's, Atrazine, Aflatoxins, etc.
 - Bacillus cereus; B. thuringiensis; B. pumilis; B. aquimaris
 - Kocuria rosea
 - Arthrobacter sulfonivorans; Arthrobacter oxydans
 - Microbacterium testaceum; Microbacterium oleivorans
 - Xanthomonadaceae bacterium
 - Stenotrophomonas chelatiphaga
 - Sporosarcina ginsengisoli
 - Acidovorax sp.
 - Viridibacillus arenosi
 - Agrobacterium tumefaciens; Agrobacterium fabrum
 - Acinetobacter dispersus ; Acinetobacter haemolyticus; Acinetobacter lwoffii
 - Cellulomonas hominis
 - Microbacterium petrolearium
 - Cellulosimicrobium funkei; Cellulosimicrobium cellulans
 - Microbacterium paraoxydans
 - Alpha proteobacterium
 - Pseudoxanthomonas mexicana
 - Sphingopyxis chilensis
 - Curtobacterium herbarum
 - Stenotrophomonas maltophilia
 - Rhodococcus erythropolis
 - Variovorax paradoxus
 - Pseudoarthrobacter sp

- Other interesting isolates
 - Moraxella osloensis
 - Produces molluscicide
 - Symbiotic with Nematode
 - Toxic to grey garden slug
 - Pseudomonas syringae
 - Allows water to freeze at higher temps
 - Used by ski resorts
 - Role in atmosphere
 - Chromobacterium violaceum
 - Produces Violacein
 - Pseudomonas entomophila
 - Toxic to insects
 - Used in agriculture as natural control method
 - Stenotrophomonas rhizophila
 - Produces osmoprotective substances to help plants

Wikepedia.com

Phys.org

Mortality event in the Clinch River

- Clinch River
 - Eastern TN, VA
 - Several mortality events
 - Pheasantshell
- Sampled using same methods as UMR

http://orig.jacksonsun.com

Clinch River Results

- Shared between UMR and Clinch River
 - Bacillus spp.
 - Including species with high capacity for calcium carbonate production
 - Aeromonas spp.
 - Pseudomonas spp.
 - Moraxella osloensis

Some Differences

- Yokenella regensbergei (47%; 9 of 19 mussels)
 - Significance Unclear
 - Isolated from oil contaminated soils
 - Potential to degrade hydrocarbons
 - Reported as the most prevalent isolate in an Ebonyshell mortality event in Tennessee River, Alabama. (Starliper et al 2009)
 - Future work will determine importance of this isolate

Comparison of Clinch River to UMR

- Mississippi River
 - Bacteria associated with degrading toxic substances were isolated from 40% of the mussels
- Clinch River
 - Only a couple isolates

National Park Service

Mussel Bacteriology Conclusions

- Collection baseline data is critical
 - Combination of metagenomic and culture methods
 - Understand the Bacterial Communities
- Work towards identifying pathogens and standard methods
 - Protect the animals brought into the hatchery
- Yokenella regensbergei deserves further study
- Similar to marine mussels- captive populations might play an important role in identifying causative agents of disease

Thanks!

- La Crosse Fish and Wildlife Conservation Office (USFWS)
- Upper Midwest Environmental Sciences Center (USFWS)
- Genoa National Fish Hatchery (USGS)
- Whitney Genetics Laboratory (USFWS)

Any Questions?

